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Abstract. We investigate the effect of electronic mass renormalization due to the coupling of
electrons to an Einstein phonon in the presence of a Van Hove singularity in the density of states,
resulting from a saddle point in the bare electronic spectrum. We show that an enhancement of
mass anisotropy is produced in a wide region of parameters of our model.

The problem of the effect of a Van Hove singularity (VHS) in the density of states (DOS),
close to the Fermi level, on the physical properties of an electronic system has been the
object of a great interest.

Even before the discovery of high-Tc superconductors (HTSC), the presence of a VHS
was considered as one of the possible factors which could contribute to increase the
superconducting critical temperatureTc, within a BCS scheme [1]. The discovery of high-
Tc superconductors (HTSC) has stimulated a new interest in the Van Hove scenario [2], to
account for both the superconducting and anomalous metallic properties of these materials.

In a two-dimensional system the presence of a logarithmic VHS in the DOS is a
topological consequence of the lattice periodicity [3], which manifests itself in the presence
of saddle points in the electronic band structure. High-resolution experiments of angle-
resolved photoemission (ARPES) performed on various classes of HTSC indeed reveal the
presence of extended anisotropic saddle points [4–7] at the coordinates(0,±π), (±π, 0) in
the two-dimensional Brillouin zone: the flattening of the band spreads over a large portion
of k-space moving from(0, π) along they direction; however, whenk varies along the
x direction the quasi-particle peak moves rapidly towards higher binding energies, until
it reaches the Fermi level. The width and the strong anisotropy of the saddle point are
two properties that cannot be described to this extent by LDA calculations. Moreover
these extended saddle points yield a divergence in the DOS which is stronger than the
logarithmic VHS; this may have important consequences on the value ofTc [5], as well as
on the transport properties of the system, due to the enhancement of phase space allowed
for scattering processes.

In this paper we address a much simpler issue than explaining the complexity of the
band structure of the cuprates [8]. Within a simple model, we show that in the presence of
a saddle point in the electronic spectrum, the coupling of electrons to phonons may lead to
an enhancement of mass anisotropy. In particular we consider as a perturbative term to a
lattice-electron bare Hamiltonian the coupling to an Einstein phonon

ω0

∑
q

a†qaq +
∑
k,q,σ

gq(a
†
−q + aq)(c†k+qck − 〈c†k+qck〉) (1)

0953-8984/97/4610195+08$19.50c© 1997 IOP Publishing Ltd 10195



10196 S Caprara and V Del Prete

wherea†q creates a dispersionless Einstein phonon of a constant frequencyω0 and momentum
q, and the coupling constant is given by

gq = g when |qx |, |qy | < qc
gq = 0 when|qx |, |qy | > qc

whereqc is a cut-off for the momentum transfer. We have subtracted the average value of
c
†
k+qck to eliminate the Hartree contribution to the self-energy.

The electron–phonon interaction can give an isotropic mass enhancement when the bare
electronic band is parabolic [9]. We show that starting with a realistic two-dimensional-
lattice band, the mass renormalization around the saddle point is anisotropic. Indeed the
main mechanism for mass renormalization in [9] is the presence of a jump in the imaginary
part of the self-energy at the phonon thresholdω0, and the consequent divergence of the
real part of the self-energy. This in turn produces the pinning of a quasi-particle peak with
strong mass renormalization. Our main argument is that, close to a saddle point in the
electronic spectrum, the above mechanism is more active in one direction ink-space, giving
rise to the aforementioned anisotropic mass enhancement.

Although our result may not have a direct relevance to HTSC, we still refer to these
systems to choose the parameters of the model and to compare our final conclusions with the
experimental results. To reproduce the experimentally observed shape of the Fermi surface
of the cuprates the following electronic band is usually considered

ξ(k) = −2t
[
cos(kx)+ cos(ky)+ α cos(kx) cos(ky)

]− µ (2)

α = 2t ′/t being a measure of the strength of the next-to-nearest-neighbours hopping
parametert ′. In all our calculations we consider a unitary lattice spacing and all the energies
are measured from the chemical potentialµ. At the bottom of the band, corresponding to
the pointk = (0, 0), the dispersion (2), expanded to the second order, is parabolic with
isotropic effective masses

ξ(k) ' E0+
k2
x + k2

y

2m0
(3)

whereE0 = −2t (2+ α) − µ and 1/m0 = 2t (1+ α). As we previously remarked, within
the Migdal approximation, a self-consistent expression for the self-energy may be found
analitically for the model (1) in the case of a parabolic band [9]. When|ξ(k)| � ω0 the
quasi-particle dispersion may be written as

ξ̃ (k) ' ξ(k)

1+ λ
λ = − ∂<6

∂ε

∣∣∣∣
ε=0

= g2N(0)

ω0
(4)

whereN(0) is the DOS, which is actually constant in two dimensions for the parabolic
band (3), andλ < 1 in a weak-coupling regime, where vertex corrections are negligible. A
second order expansion of (2) around the saddle point(0, π), gives a hyperbolic band

ξ(k) = E0+ k2
x

2mx
− k2

y

2my
(5)

whereE0 = 2αt − µ, 1/mx = 2t (1− α), 1/my = 2t (1+ α), and ky is the momentum
in the y direction measured from the point(0, π). As we want to investigate the effect of
the electron–phonon interaction on the electronic effective mass close to the saddle point
we perform a lowest-order perturbative calculation of the electron self-energy within the
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Migdal approximation, assuming (5) as the bare band. We choose our parameters to obtain
a small value forλ in (4), close to the parabolic bottom of the band, but there is no reason to
assume that vertex corrections may be neglected close to the saddle point [10]. Nevertheless
the spirit of our paper is to determine the contribution of the Fock diagram to the mass
renormalization in a region around the saddle point, choosing our parameters with respect to
the weak-coupling conditionλ < 1 in a region ofk-space close to the origin of coordinates.

The second-order self-energy, in this case, is given by

6(k, εν) = T
∑
q

g2
q

∑
n

D(q, ωn)G(k + q, εν + ωn)

D(q, ωn) andG(k, εν) are the bare phononic and electronic propagators in the Matsubara
formalism. After performing the summation on the Matsubara frequencies and extending
this to real frequencies we obtain

6(k, ε) =
∑
q

g2
q

[
b(ω0)+ f (ξ(k + q))
ξ(k + q)− ω0− ε − iδ

+ b(−ω0)+ f (ξ(k + q))
ξ(k + q)+ ω0− ε − iδ

]
wheref (z) is the Fermi function,b(z) is the Bose function and assumingb(z − iεν) =
−f (z). In the limit of zero temperature we obtain for the imaginary part of6

=6(k, ε) = π
∑
q

g2
q [1− ϑ(ε + ω0)] δ(ξ(k + q)− ω0− ε)

− π
∑
q

g2
qϑ(ε − ω0)δ(ε − ω0− ξ(k + q)). (6)

The presence of theϑ functions in (6) imposes a threshold at±ω0. In addition, from (6)
we notice that in the limitqc → ∞ we may change the sum variableq → q + k making
evident that in this case the self-energy does not depend onk. This independence is only
approximate, when the cut-off is finite, for|k|/qc � 1, i.e. in a large portion ofk-space
as far asqc is of the order of the size of the Brillouin zone. The choice of a hyperbolic
band allows us to carry out the calculation and to obtain an explicit expression for the
imaginary part of6, which would not have been possible had we considered the original
band (2). For the sake of brevity we just show how to proceed in the caseε > 0 to point
out the effects that the introduction of a finite cut-off has on the self-energy. We insert
the explicit expression of the band (5) in (6) and we operate the following substitutions:
xk = kx/

√
2mx , yk = ky/

√
2my , xc = qc/

√
2mx , yc = qc/

√
2my , x = xk + qx/

√
2mx and

y = yk + qy/
√

2my . Changing from the discrete sum to the integral in (6) we obtain

−=6(k, ε) = g2

2π
√
mxmy

∫ xk+xc

xk−xc
dx
∫ yk+yc

yk−yc
dy δ(ε−ω0−E0−x2+y2) (7)

where theϑ function has been omitted provided that we impose the conditionε > 0. From
(7) one may see that a finite cut-off introduces a dependence onk through the integral end
points. Moreover a minimum and a maximum frequency are generated both in the positive
and in the negative part of the quasi-particle spectrum, below the threshold at−ω0 and
above the threshold at+ω0. These frequencies are determined by the zero-points in the
argument of theδ function, that is present in (6) as well as theϑ function. These zero-points
must fall inside the range of integration in (7) so that kinematic bounds are generated onε,
defining a finite range of frequencies where=6 6= 0.

Indeed a reduction of the phononic phase space, produced by the introduction of a
finite cut-off, provides further limits on the frequencies allowed in scattering processes so
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that by decreasingqc, the region where=6 6= 0 gets narrower. This may have important
consequences on the quasi-particle spectrum, as even the discontinuities=6 shows at±ω0

can be eliminated by a reduction onqc. This happens when the lowest positive (highest
negative) frequency, generated in the spectrum by theδ function in (7), is higher (lower)
than ω0 (−ω0), defining a new threshold for the scattering; in this case=6 starts with
continuity from the new threshold and the mass-anisotropy enhancement is not sizeable.

We have calculated the real part of the self-energy through a numerical Kramers–Krönig
transformation on=6, which is nonzero in a finite range of energies. This has allowed us
to obtain values for the spectral density, that is the distribution of the quasi-particle energies

A(k, ε) = 1

π

|=6(k, ε)|
[ε − ξ(k)−<6(k, ε)]2+ [=6(k, ε)]2

(8)

if =6 6= 0 and

A(k, ε) = δ(ε − ξ(k)−<6(k, ε)) (9)

if =6 = 0. To carry on our calculation and get numerical results we have chosen the
different parameters to obtainλ 6 1 in (4) and a large value forqc to focus on band-
structure effects only, without including the effects associated to a reduction of the phase
space allowed for scattering. Moreover we takeE0 ' −56 meV,my ' 3.75×10−3 meV−1,
mx ' rmy with r = 0.5, kF ' 0.46 with E0 + k2

F/2mx = 0, g ' 200 meV,ω0 ' 20 meV,
qc = 1 or π .

Figure 1. A(k, ε) at k = (0, π); the sharp Lorentzian peak located at the renormalized VHS
energyẼ0 = −14.6 meV is obtained by broadening the originalδ function with a small imaginary
partδ ∼ 0.1 meV whenever=6 = 0; the dip in the continuous spectrum is due to a logarithmic
singularity of=6 atε = −ω0+E0. The dashed line represents the spectrum after the convolution
with a Gaussian distribution of width 10 meV and the Fermi function at a temperatureT = 15 K,
to simulate typical experimental conditions.

The choice of a hyperbolic band, characterized by a VHS in the DOSN(ε) at the
energyE0, does not allow for the approximationN(ε) ' N(0) which was used to obtain a
self-consistent, explicit expression of the self-energy for the parabolic band [9], and which,
in that case, makes=6 symmetric forε→−ε; in the case of the bare electronic band (5)
a different procedure is needed even to calculate the second-order diagram because of the
strongly variable DOS. Moreover the symmetryε → −ε is lost and, indeed,=6 may be
singular at the energy−ω0+ E0.
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We have studied the spectral densities lettingk vary in thex and in they direction around
the saddle point(0, π), with the same procedure used in ARPES experiments [4, 5, 6, 7].
The δ function peak is at an energy of−14.6 meV in (0, π) (see figure 1), thus fixing the
position of the renormalized VHS; this peak moves left or right from this energy whenk

varies along they or along thex direction starting from(0, π).

Figure 2. Real part of the self-energy, plotted both in the caseqc = 1 (full curve) and in the
caseqc = π (dashed curve); the intersection with the lineε − ξ(k) gives the positions of the
δ function peak and the broad features in figure 1. The dashed vertical line indicates the Fermi
level.

A strong anisotropic mass enhancement is obtained, as the real part of the self-energy
diverges at±ω0 (see figure 2). Indeed whenk varies along they direction, the intersection
of the lineε−ξ(k) with the curve<6(k, ε), which determines the position of theδ function
peak (9), moves towards the singularity, and becomes pinned (see figure 2), producing an
enhancement of the effective mass; however, whenk varies along thex direction the peak
moves towards the Fermi level, where the slope of the curve<6 is reduced (figure 2), so
that the resulting effective mass is less enhanced.

We point out that the broad peak observed at an energy'−100 meV in figure 1
results from the corresponding intersection of the lineε − ξ(k) with the curve<6(k, ε)
(see figure 2). To understand the presence of this feature one has to observe that=6 has a
divergence at−ω0+E0, so that<6 has a jump at the same energy and is approximately flat
above and below the jump. A quasi-particle peak may then appear at energies6−ω0+E0.
This peak is, however, very broad, because of the large value of=6 close to the divergence,
so that its position changes only slightly with varyingk.

In figure 3 we have plotted the position in energy of theδ peak for values of
k where it fairly represents the electronic quasi-particle; interpolating the curves with
parabolas we have obtained the new effective massesm∗y'29.0 × 10−3 meV−1'7.7my ,
m∗x'7.7×10−3 meV−1'4.1mx ,m∗y/m

∗
x'3.76'1.88my/mx . The ratio between the effective

masses has an increase of 88% compared to the bare one; this indicates an increase in the
anisotropy of the band. We have considered the effect of a reduction ofqc on the anisotropy
of the mass renormalization repeating the same study in the caseqc = 1; this value of the
cut-off is large enough to keep the dependence of the self-energy onk negligible in a wide
region around the saddle point. Moreover a reduction of the phase space available for
the scattering increases the spectral weight of theδ function compared to the continuous
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Figure 3. Quasi-particle bands obtained plotting the position of theδ function whenk varies
along thex (full curves) andy (dashed curves) directions, both in the caseqc = π and in the case
qc = 1; a reduction ofqc increases the anisotropy of the band. We also show the renormalized
bands after the convolution (10), in the caseqc = π , to point out how this operation does not
eliminate the anisotropy of the band.

spectrum. We obtainm∗y'40.0×10−3 meV−1'10.67my , m∗x'6.5×10−3 meV−1'3.47mx ,
m∗y/m

∗
x'6.15'3.08my/mx , and the energy for the VHS at(0, π) is −18.2 meV. Thus, in

the large-cut-off regime, a reduction ofqc increases the mass anisotropy. In figure 3 the
renormalized bands are shown both in the caseqc = π and in the caseqc = 1.

To make an easier comparison with the ARPES spectra [4–7] we have tried to simulate
the experimental resolution (10 meV at best in [4]) and the effects of a finite temperature
operating a convolution of our spectral densities with a Gaussian distribution weighted by
the Fermi function

I (k, ε) =
∫ +∞
−∞

dε′A(k, ε′)
e−(ε

′−ε)2/2σ 2

√
2πσ 2

1

eε′/KT + 1
(10)

where we have chosenT = 15 K andσ = 10 meV to reproduce the experimental conditions
in [4]. The resulting intensity looks much more similar to the ARPES spectra as we show in
figure 4; its energy varies between−15 and−25 meV whenk varies along they direction
starting from(0, π).

Moreover, although the peak now spreads over a larger range of energies, the
anisotropy in the mass renormalization is not drastically reduced by the convolution.
The new effective masses after the convolution arem∗y'16.0 × 10−3 meV−1'4.27my ,
m∗x'6.5× 10−3 meV−1'3.47mx , m∗y/m

∗
x'2.46'1.23 my/mx . The effective-masses ratio

has an increase of 23% compared to the bare one. The renormalized bands before and after
the convolution are given in figure 3.

In conclusion we have shown that the electron–phonon interaction may produce a
sizeable enhancement of mass anisotropy close to a saddle point. The effect is produced by
different behaviour as the quasi-particle peak moves towards or away from the divergence
in the real part of the self-energy. This mechanism is analogous to the one described in
[9], where, however, an isotropic mass renormalization was found for the parabolic band.
We point out that, even if the degree of anisotropy enhancement depends on the bare-mass
ratio (1− α)/(1+ α), the mechanism described in this paper produces an anisotropy even
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Figure 4. Spectra obtained from the convolution (10) plotted in sequence ask varies along
the x and y directions starting from(0, π). The position of the saddle point is indicated by
the horizontal dashed line. The curves above (below) the curve atk = (0, π) are obtained by
increasingkx (decreasingky ) of 1k = 0.1 for each curve.

at α = 0, when the bare spectrum is isotropic around the saddle point. The relevant feature
is indeed the presence of a VHS at an energy close to the phonon threshold−ω0.

The divergence of the density of states at the VHS, presumably limits our perturbative
approach. The spirit of our calculation is, however, to choose the value of the electron–
phonon coupling in such a way as to fulfil the weak-coupling condition close to the bottom
of the band, where the density of states is slowly varying in two dimensions. In other words
we compared the mass renormalization resulting from the second-order Fock diagram in two
different regions of the electronic spectrum, to put in evidence the effect of a different form
of the spectrum close to a saddle point. Other mechanisms for mass renormalization may
arise as the strength of the electron–phonon interaction is increased towards the strong-
coupling regime [11]. The analysis of the role of these strong-coupling polaronic effects,
close to a saddle point, was however out of the scope of this paper.
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